
Property Graph Exchange Format (PG)
https://doi.org/10.5281/zenodo.13859531

Version 1.0.0

Hirokazu Chiba

0000-0003-4062-89031, Jakob Voß

0000-0002-7613-41232

1Database Center for Life Science (DBCLS)
2Verbundzentrale des GBV (VZG)

2024-09-30

This document specifies a common data model of labeled property graphs, a syntax to
write property graphs in a compact textual form, and serialization formats of property
graphs in JSON and in newline-delimited JSON.

Table of contents

1 Introduction 1
1.1 Motivation . 1
1.2 Terminology . 1
1.3 Robustness principle . 2

2 Data Model 2

3 PG Format 3
3.1 Basic structure . 3
3.2 Identifiers . 3
3.3 Nodes . 3
3.4 Edges . 4
3.5 Labels . 6
3.6 Properties . 6
3.7 Quoted Strings . 8
3.8 Whitespace . 8
3.9 Grammar . 8

4 PG-JSON 10

5 PG-JSONL 11

6 References 11
6.1 Normative References . 11
6.2 Informative references . 11

1

https://doi.org/10.5281/zenodo.13859531
https://orcid.org/0000-0003-4062-8903
https://orcid.org/0000-0003-4062-8903
https://orcid.org/0000-0002-7613-4123
https://orcid.org/0000-0002-7613-4123

Appendices 12
JSON Schemas . 12
Changes . 12
Acknowledgements . 12

1 Introduction

1.1 Motivation

Property Graphs (also known as Labeled Property Graphs) are used to structure data in
graph databases and related applications.

Implementations of property graphs slightly differ in support of data types, restrictions on labels etc.
The definition of property graphs used in this specification is aimed to be a superset of property
graph models of common graph databases and formats. The model and its serializations have
first been proposed by Hirokazu Chiba, Ryota Yamanaka, and Shota Matsumoto (2019, 2020) and
revised into this specification together with Jakob Voß.

1.2 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHOULD”, “SHOULD NOT”, “REC-
OMMENDED”, “NOT RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to
be interpreted as described in BCP 14 (RFC 2119 and RFC 8174) when, and only when, they
appear in all capitals, as shown here.

1.3 Robustness principle

Applications MAY automatically convert documents not fully conforming to the specification of
PG-JSON and/or PG-JSONL to a valid form, for instance by:

• creation of implicit nodes for node identifiers referenced in edges
• addition of missing empty fields labels and/or properties
• removal or mapping of invalid property values such as null and JSON objects
• mapping of numeric node identifiers and edge identifiers to strings
• removal of additional fields not defined in this specification

2 Data Model

A property graph consists of nodes and edges between these nodes. Each node has a unique
node identifier. Each edge is either directed or undirected and can have an optional edge
identifier. Each of the nodes and edges can have properties and labels. Properties are mappings
from keys to non-empty lists of values. Node identifiers, labels, and keys are non-empty Unicode
strings. A value is a Unicode string, a boolean value, or a number as defined by RFC 8259.

Extended graph features not being part of this data model include graph attributes, hierarchies,
hyper-edges and semantics of individual labels and property keys.

2

https://arxiv.org/abs/1907.03936
https://arxiv.org/abs/2203.06393
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc8174
https://tools.ietf.org/html/rfc8259

3 PG Format

A PG Format document allows writing down a property graph in a compact textual form. A
PG Format document is a Unicode string that conforms to grammar and rules defined in this
specification.

3.1 Basic structure

A PG Format document encodes a property graph as Unicode string. The document MUST be
encoded in UTF-8 (RFC 3629). Unicode codepoints can also be given by escape sequences in
quoted strings.

The document consists of a sequence of statements, each defining a node or an edge, or being
empty. Statements are separated from each other by a line break. Optional spaces and/or a
comment at the end of a statement are ignored.

3.2 Identifiers

An identifier is a string used to uniquely identify a node, an edge, a label, or the name of a
property. An identifier can be given as a quoted string or as an unquoted identifier.

An unquoted identifier is a non-empty string not including control codes U+0000 to U+0020
(tabulator, line breaks, space…), nor any of the characters “<” (U+003C), “>” (U+003E), ‘"’ (U+0022),
“{” (U+007B), “}” (U+007D), “|” (U+007C), “\” (U+005C), “^” (U+005E), and “`” (U+0060). An
unquoted identifier MUST NOT start with a colon (U+003A), comma (U+002C), minus (U+002D),
hash (“#”), apostrophe (“'”), or quotation mark (“"”). Colon, hash, comma, and apostrophe are
allowed in an unquoted identifier after its first character.1

Example 1: Several unquoted identifiers
abc
42
�
dc:title
http://example.org/?a=-&c=0#x
~',-:

3.3 Nodes

A node consists of the following elements, given in this order and separated by delimiting whites-
pace:

• a REQUIRED identifier
• an OPTIONAL list of labels
• an OPTIONAL list of properties

1This definition is equivalent to the definition of IRI references in SPARQL and in Turtle excluding empty strings,
escape sequences and forbidding some start characters.

3

https://www.w3.org/TR/sparql11-query/#rIRIREF
https://www.w3.org/TR/turtle/#grammar-production-IRIREF

Example 2: Some node statements
id :label key:value
42 :answer
"node id with spaces"

3.3.1 Node merging

A node can be defined with multiple statements having the same node identifier: a node is merged
with an existing node by appending labels and property values.

Example 3: One node defined by multiple statements
a :x k:1 m:true
a :y k:2

Example 4: Same node defined by one statement
a :x :y k:1,2 m:true

3.3.2 Implicit nodes

Nodes can also be defined implicitly as part of an edge: node identifiers referenced in edges imply
the existence of nodes with these identifiers.

Example 5: Simple graph with two nodes and one edge
a -> b

Example 6: Same graph with explicit node statements
a
b
a -> b

3.4 Edges

An edge consists of the following elements, given in this order and separated by delimiting whites-
pace:

• an OPTIONAL edge identifier
• a REQUIRED source node identifier
• a REQUIRED direction
• a REQUIRED target node identifier
• an OPTIONAL list of labels
• an OPTIONAL list of properties

Example 7: Some edge statements
a -> b
a -- b key:value
1: a -> b :label key:value

4

Example 8: No edge statements
a--b # a node with node identifier "a--b"
a->b # syntax error

3.4.1 Edge identifiers

An edge identifier is an identifier as the first element of an edge statement, directly followed by a
colon (U+003A).

Example 9: Graph with two equivalent edges, differentiated by edge identifiers
1: a -> b :follows since:2024
"x": a -> b :follows since:2024

Colons are not forbidden in edge identifiers:

Example 10: Edge identifiers with colon
x:: a -> b # edge identifier "x:"
":": a -> b # edge identifier ":"

Edge identifiers MUST NOT be repeated.

Example 11: The second statement is invalid because of repeated edge identifier
1: a -> b :follows
1: a -> b since:2024

No space is allowed between the edge identifier and its colon:

Example 12: Invalid statement
1 : a -> b

3.4.2 Edge directions

The direction element of an edge is either the character sequence -> for a directed edge or the
character sequence -- for an undirected edge.

3.4.3 Loops

Edges can connect a node to itself.

Example 13: Directed and undirected loop
a -> a
a -- a

5

3.4.4 Multi-edges

The Property Graph Data Model allows for multiple edges between the same node.

Example 14: Graph with two indistinguishable edges
a -> b :follows since:2024
a -> b :follows since:2024

Edge identifiers can be used to identify and reference individual multi-edges.

3.5 Labels

A label is an identifier following a colon (U+003A). Spaces between colon and label identifier are
OPTIONAL but NOT RECOMMENDED.

Labels of a node or an edge are unique: repeated labels are ignored. Applications SHOULD preserve
the order of labels of a node or an edge.

Example 15: Repeated labels on same node or edge are ignored
a :label1 :label2 :label1 # label1 is repeated
a :label1 :label2 # equivalent statement
a : label1 : label2 # equivalent statement

Colons are not forbidden in labels:

Example 16: Labels with colons
a :b:c # label "b:c"
a :http://example.org/ # label "http://example.org/"

3.6 Properties

A property consists of the following elements, given in this order:

• a REQUIRED property key, being an identifier
• a colon (U+003A)
• a non-empty list of property values, separated by comma (U+002C)

Each property value MAY be preceded and followed by delimiting whitespace. If the property
key is an unquoted identifier and no delimiting whitespace is given before the first value, then the
property key MUST NOT contain a colon.

Example 17: Invalid property
node key # delimiting whitespace not allowed before colon
: value

6

Example 18: Property with optional spaces and/or whitespace
node key: value # spaces before value
node key:value # short form
node "key":value # key can be quoted string
node key: # delimiting whitespace between colon and value
value

node key: 1,2 # short form of a list
node key: 1 # delimiting whitespace...
, # ...after value 1 and before value 2
2

node a:b:c # property key "a" with value "b:c"
node a:b: c # property key "a:b" with value "c"

3.6.1 Property values

A property value is one of

• a number value, given as defined in section 6 of RFC 8259. As mentioned there, implemen-
tations MAY set limits on the range and precision of numbers and double precision (IEEE754)
is the most likely common limit.

• a boolean value, given as one of the literal character sequences true and false
• a string value, given as one of

– a quoted string
– an unquoted identifier not including a comma

The data type of a property value in PG Format is either string, or number, or boolean.2 Appli-
cations MAY internally map these types to other type systems. Values of the same property are
allowed to have different data types.

Example 19: Property values
node n: 1,-1,2e+3 # numbers

b: true, false # boolean values
s: hello,"true","" # strings

3.6.2 Property merging

Value lists of properties of the same property key are concatenated. Value lists are no sets: the
same value can be included multiple times.

Example 20: Three nodes with same properties
a x:1,2,3 # property values given as list
b x:1 x:2,3 # property values given as two lists
c x:1 # property values given...
c x:2 x:3 # ...in two node statements

2This is identical to scalar JSON values (string, number, boolean) and every serialized JSON scalar is a valid
property value in PG Format.

7

https://tools.ietf.org/html/rfc8259

3.7 Quoted Strings

A quoted string starts with an apostrophe (“'”) or quotation mark (“"”) and ends with the same
character. In between, all Unicode characters are allowed, except for the characters that MUST be
escaped:

• apostrophe, when the string is quoted with apostrophe
• quotation mark, when the string is quoted with a quotation mark
• reverse solidus (\ U+005C)
• control characters U+0000 through U+001F except line feed (U+000A), carriage return (U+000D),

and tabular (U+0009)

All characters can be escaped as defined by JSON specification (RFC 8259, section 7) with the
addition of the two-character escape sequence \' to escape an apostrophe. Quoted strings in PG
Format further differ from JSON by string quoting with apostrophe in addition to quotation mark
and by allowing unquoted line feed, carriage return, and tabular.

Example 21: The same string given in multiple quoted forms
"hello,\nworld"
'hello,\u000Aworld'
"hello,
world"

Example 22: Invalid string escape sequences
"h\ello\u21"

3.8 Whitespace

A line break is either a line feed (U+000A) or a carriage return (U+000D) optionally followed by a
line feed.

Spaces are a non-empty sequence of space (U+0020) and/or tabular (U+0009).

A comment begins with a hash (# = U+0023) and it ends before the next line break or at the end
of the document.

Delimiting whitespace separates elements of a statement. Delimiting whitespace consists of an
optional sequence of spaces, comment, and/or line breaks and it ends with spaces. The inclusion
of line breaks in delimiting whitespace is also called line folding.

Example 23: Line folding
a :x # node id and label
this and the following line are empty

:y # another label of the same node at continuation line

3.9 Grammar

The formal grammar of PG Format is specified in EBNF Notation used in the specification of XML,
with the addition of negative lookahead operator (!A B matches any expression B that does not
start with expression A) and the terminal symbol END denoting the end of a document.

8

https://tools.ietf.org/html/rfc8259
https://www.w3.org/TR/REC-xml/#sec-notation

/* 3.1 Basic Structure */
PG ::= (Statement? Empty LineBreak)* Statement? Empty
Statement ::= Edge | Node

/* 3.2 Identifiers */
Identifier ::= QuotedId | UnquotedStart UnquotedChar*
UnquotedChar ::= [^#x00-#x20<>"{}|^`\]
UnquotedStart ::= !['":#,-] UnquotedChar

/* 3.3 Nodes & 3.4 Edges */
Node ::= Identifier Labels Properties
Edge ::= (EdgeIdentifier)? EdgeNodes Labels Properties
EdgeIdentifier ::= QuotedKey DWS | UnquotedKey DWS
EdgeNodes ::= Identifier DWS Direction DWS Identifier
Direction ::= "--" | "->"

/* 3.5 Labels */
Labels ::= (DWS ":" Label)*
Label ::= ":" Spaces? Identifier

/* 3.6 Properties */
Properties ::= (DWS Property)*
Property ::= Key ValueList
Key ::= QuotedKey | UnquotedKey DWS | PlainKey
QuotedKey ::= QuotedId ":"
UnquotedKey ::= UnquotedStart ((!":" UnquotedChar)* ":")+
PlainKey ::= UnquotedStart (!":" UnquotedChar)* ":"

/* 3.6.1 Property Values */
ValueList ::= DWS? Value (DWS? "," DWS? Value)*
Value ::= Number | Boolean | QuotedString | UnquotedValue
Number ::= "-"? ("0" | [1-9] [0-9]*) ("." [0-9]+)? ([eE] [+-]? [0-9]+)?
Boolean ::= "true" | "false"
UnquotedValue ::= UnquotedStart (!"," UnquotedChar)*

/* 3.7 Quoted Strings */
QuotedString ::= "'" SingleQuoted* "'" | '"' DoubleQuoted* '"'
QuotedId ::= "'" SingleQuoted+ "'" | '"' DoubleQuoted+ '"'
SingleQuoted ::= Unescaped | '"' | Escaped
DoubleQuoted ::= Unescaped | "'" | Escaped
Unescaped ::= [^#x00-#x08#x0B#x0C#x0E-#x1F"'\]+
Escaped ::= "\" ('"' | "'" | "\" | "/" | [bfnrt] | "u" Hex Hex Hex Hex)
Hex ::= [0-9a-fA-Z]

/* 3.8 Whitespace */
Spaces ::= [#x20#x09]+
LineBreak ::= [#x0A] | [#x0D] [#x0A]?
Comment ::= "#" [^#x0D#x0A]*
Empty ::= Spaces? Comment?
DWS ::= (Empty LineBreak)* Spaces

9

4 PG-JSON

A PG-JSON document serializes a property graph in JSON. A PG-JSON document is a JSON
document (RFC 8259) with a JSON object with exactely two fields:

• nodes an array of nodes
• edges an array of edges

Each node is a JSON object with exactely three fields:

• id the node identifier, being a non-empty string. Node identifiers MUST be unique per
PG-JSON document.

• labels an array of labels, each being a non-empty string. Labels MUST be unique per node.
The array SHOULD be sorted by unicode codepoints.

• properties a JSON object mapping non-empty strings as property keys to non-empty arrays
of scalar JSON values (string, number, boolean) as property values.

Each edge is a JSON object with one optional and four mandatory fields:

• id (optional) the edge identifier, being a non-empty string, or the value null equivalent to
no edge identifier. Edge identifiers MUST be unique per PG-JSON document.

• undirected (optional) a boolean value whether the edge is undirected
• from an identifier of the source node from nodes array
• to an identifier of the target node from nodes array
• labels and properties as defined above at nodes

Example 24: Example graph in PG-JSON
{
"nodes": [{

"id": "101", "labels": ["person"],
"properties": {
"name": ["Alice", "Carol"],
"country": ["United States"]

}
},{
"id": "102", "labels": ["person", "student"],
"properties": { "name": ["Bob"], "country": ["Japan"] }

}],
"edges": [{

"from": "101", "to": "102", "undirected": true,
"labels": ["same_class", "same_school"],
"properties": { "since": [2012] }

},{
"from": "101", "to": "102",
"labels": ["likes"],
"properties": { "engaged": [false], "since": [2015] }

}]
}

10

https://tools.ietf.org/html/rfc8259

5 PG-JSONL

A PG-JSONL document or stream serializes a property graph in JSON Lines format, also known
as newline-delimited JSON. A PG-JSONL document is a sequence of JSON objects, separated
by line separator (U+000A) and optional whitespace (U+0020, U+0009, and U+000D) around JSON
objects, and an optional line separator at the end. Each object is

• either a node with field type having the string value "node" and the same mandatory node
fields from PG-JSON format,

• or an edge with field type having the string value "edge" and the same mandatory edge fields
from PG-JSON format.

Node objects SHOULD be given before their node identifiers are referenced in an edge object,
but applications MAY also create implicit node objects for these cases. Applications MAY allow
multiple node objects with identical node identifier in PG-JSONL but they MUST make clear
whether nodes with repeated identifiers are ignored, merged into existing nodes, or replace existing
nodes.

6 References

6.1 Normative References

• Bradner, S.: Key words for use in RFCs to Indicate Requirement Levels. BCP 14, RFC 2119,
March 1997, http://www.rfc-editor.org/info/rfc2119.

• Bray, T.: The JavaScript Object Notation (JSON) Data Interchange Format. RFC 8259,
December 2017. https://tools.ietf.org/html/rfc8259

• Bray, T. et al: Section 6 (Simple Extended Backus-Naur Form (EBNF) notation). In: W3C
Extensible Markup Language (XML) 1.0 (Fifth Edition). November 2008. https://www.w3
.org/TR/REC-xml/#sec-notation

• Leiba, B.: Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. BCP 14, RFC
8174, May 2017, http://www.rfc-editor.org/info/rfc8174.

• The Unicode Consortium: The Unicode Standard. http://www.unicode.org/versions/latest/

• Yergeau, F.: UTF-8, a transformation format of ISO 10646. RFC 3629, November 2003.
https://tools.ietf.org/html/rfc3629

6.2 Informative references

• Property Graph Exchange Format Homepage https://pg-format.github.io/ including PG Test
Suite, PG Syntax Highlighting, PG Format discussion forum, and links to implementations.

• JSON Schema schema language

• IEEE Standard for Floating-Point Arithmetic

• Chiba, H., Yamanaka, R., Matsumoto, S.: Property Graph Exchange Format. 2019

11

http://www.rfc-editor.org/info/rfc2119
https://tools.ietf.org/html/rfc8259
https://www.w3.org/TR/REC-xml/#sec-notation
https://www.w3.org/TR/REC-xml/#sec-notation
http://www.rfc-editor.org/info/rfc8174
http://www.unicode.org/versions/latest/
https://tools.ietf.org/html/rfc3629
https://pg-format.github.io/
https://github.com/pg-format/pg-test-suite
https://github.com/pg-format/pg-test-suite
https://github.com/pg-format/pg-highlight
https://github.com/orgs/pg-format/discussions
https://json-schema.org/
https://doi.org/10.1109/IEEESTD.2019.8766229
http://arxiv.org/abs/1907.03936

Appendices

The following information is non-normative.

JSON Schemas

The PG-JSON format can be validated with a non-normative JSON Schema file pg-json.json in
the specification repository. Rules not covered by the JSON schema include:

• nodes referenced in edges must be defined (no implicit nodes)
• node identifiers must be unique per graph
• edge identifiers must be unique per graph

The PG-JSONL format can be validated with a non-normative JSON Schema file pg-jsonl.json
in the specification repository. Validation is limited in the same way as validation of PG-JSON
with its JSON Schema.

Changes

This document is managed in a revision control system at https://github.com/pg-format/specifica
tion, including an issue tracker.

• Version 1.0.0

Introduced comments, line folding, edge identifiers. Aligned property values with JSON
syntax. Added more formal rules for quoted strings and unquoted identifiers. Added PG-
JSONL. Changed node identifiers to be strings.

• Version 0.3

Less formal specification first published in 2019. See latest draft from 2020.

Acknowledgements

Many thanks to Ryota Yamanaka (Meer Consulting Group) and Shota Matsumoto (Lifematics
Inc.) for their contribution to the first versions of PG Format.

12

https://pg-format.github.io/specification/schema/pg-json.json
https://pg-format.github.io/specification/schema/pg-jsonl.json
https://github.com/pg-format/specification
https://github.com/pg-format/specification
https://github.com/pg-format/specification/issues
https://pg-format.readthedocs.io/en/0.3/contents/pg-format.html

	Introduction
	Motivation
	Terminology
	Robustness principle

	Data Model
	PG Format
	Basic structure
	Identifiers
	Nodes
	Edges
	Labels
	Properties
	Quoted Strings
	Whitespace
	Grammar

	PG-JSON
	PG-JSONL
	References
	Normative References
	Informative references

	Appendices
	JSON Schemas
	Changes
	Acknowledgements

